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ABSTRACT 

It is proved tha t  the  finiteness length of r = SL,, (Fq [t]) is n - 2 if n > 2 and 

q _> 2 '~-2. The  proof  consists in s tudying the homotopy  type  of  a cer ta in  

F-invariant  f i l trat ion of an appropr ia te  B r u h a t - T i t s  building on which F 

acts. 

In t roduc t ion  

Recall that a group F is said to be of type F P ,  if the ZF-model Z admits a 

projective resolution which is finitely generated in dimensions < n, see [23]. For 

example, F is of type FP1 if and only if F is finitely generated, and F is of type 

FPz if it is finitely presented. The converse of the last assertion is not known. 

So one defines a group to be of type F , ,  n >_ 2, if it is finitely presented and of 

type FPn. A group F is of type F ,  iff there is an Eilenberg-MacLane complex 

K(F, 1) with finite n-skeleton ([31, 32], cf. [13]). For a given group F let ¢(F) be 

the largest n (0 < n < co) such that F is of type F, .  We call ¢(F) the finiteness 

length of F. 

The first example of a group of type F2 not of type Fa was given by Stallings 

[27], and Bieri [8] extended this to a sequence of groups F ,  of finiteness length 

n. Further such examples can be found in [3, 4, 14, 28]. In this paper we give 

another such sequence 
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THEOREM: ~b(SL.(Fg[t])) = n - 2 i f  n >_ 2 and q >_ 2 "-2. 

Here Fg is the finite field with q elements. 

We actually show that for n > 2 and q > 2 "-2 the group SL,(Fq[¢]) is not of 

type F P , - I  over any ring R with 1 ~ 0 (Theorem 1.6). 

Let us recall what is known about the finiteness properties of arithmetic groups 

(for more details and references cf. [15]). In case of characteristic zero, arithmetic 

groups in general and S-arithmetic subgroups of reductive groups enjoy all finite- 

ness properties, in particular they have infinite finiteness length [21, 11, 12]. For 

S-arithmetic subgroups of solvable groups there is only a partial understanding 

of the finiteness properties; see [1, 3, 4, 9, 14]. 

In case of positive characteristic the situation is much less understood. Let K 

be a function field of transcendence degree one over the finite field k = Fq, let 

S be a finite set of places of K and let os be the ring of those functions in K 

which are holomorphic outside of S. Let G be a reductive linear algebraic group 

over K and let F = G(os) be the corresponding S-arithmetic group. There is a 

complete answer to the question when F is finitely generated and a conjecture as 

to when F is finitely presented, verified in several cases (see [7]). In particular, 

the following cases of our result were known: SL2(Fq [t]) is not finitely generated 

([20], cf. [24]), SL3(Fq[t]) is finitely generated but not FP2([6]) and SL.(Fq[t]) is 

finitely presented for n _> 4 ([22]) (we obtain this only for q _> 2"-2). 

The finiteness length >_ 3 of S-arithmetic groups F for function fields had been 

computed in two cases only: In the cocompact case - -  i.e., the K-rank of G is 

zero - -  one has 4(F) = oo ([17, 23]). Stuhler [28] proved 

4(SL2(os)) = card S - I. 

The main theorem of this paper has also been obtained independently by Abra- 

menko [5] with a better bound for q, namely q > maxi ( ,?2).  It is not clear if the 

assumption about q is necessary. The first group excluded, namely SLs(F2[t]), 

has been shown by Abramenko [5] to have finiteness length 3. 

The present proof may be of interest because it is short and easy if one admits 

certain facts about buildings and most of it holds for Chevalley groups instead 

of SL,  (see 4.3). My original proof, as announced in a talk at the Oberwolfach 

conference on topological methods in group theory in June 1986, involved a rather 

explicit description of the gallery distance in the Bruhat-Tits  building of GL, .  
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Here is an outline of the proof and of the contents of the paper. We let 

F = SLn(Fq[t]) act on the Bruhat-Ti ts  building X of V = Kn, K = Fq(t), and 

filter X as follows. Let Xd be the subcomplex of simplices having gallery distance 

_< d from the F-orbit of a certain chamber Co. The main point is to verify that 

Xd+l can be obtained from Xd by attaching (n - 1)-cells up to homotopy. The 

theorem then follows from a result of K. Brown. 

In section 1 we define the filtration and show how the theorem follows once we 

know that Xd+l is obtained from Xd by attaching (n - 1)-cells up to homotopy. 

In section 2 we define the F-restriction of a chamber in Xd+I, not in Xd. The 

images of these F-restrictions will parameterize sets of cells to be attached (see 

4.2). In section 3 we describe a fundamental set for 1" in X. In section 4 we 

see that it suffices to prove that a certain complex T(p) is spherical. In section 

5 we see that T(p) is isomorphic to a certain subcomplex of a Tits (sic! not 

Bruhat-Ti ts )  building, hence spherical by the main result of [2] - -  which was 

proved with just this application in mind. 

I thank Cornell University for its hospitality during the preparation of the final 

version of this paper. 

1. The B r u h a t - T i t s  Building and its Filtration 

We first recall the definition of the Bruhat-Ti ts  building for GL(V), V a vector 

space over a field with discrete valuation. We establish notations to describe 

our filtration. We then state the main result concerning this filtration. We 

finally show how it implies the result about the finiteness length of SL,,+I(Fq[t]). 

Note that the dimension of our vector space V is always n + 1, except in the 

introduction, where it was n. 

1.1 THE BRUHAT-TITS BUILDING OF GLn+I. Let K be a field with discrete 

valuation v, let R be the corresponding valuation ring R = {x E K[v(x) > 0}. 

R has a unique maximal ideal IrR, where ~r is any element with v@) = 1. Let 

V be a vector space of dimension n + 1 over K.  A l a t t i ce  L in V is a finitely 

generated R-submodule of V which generates V as a vector space. The set of 

lattices in V is a poset (= partially ordered set) with inclusion as order relation. 

Two lattices L, L' in V are called equ iva len t  if there is an element a E K* 

such that L' = aL. Let A = [L] be the equivalence class of the lattice L. We 
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shall consider the simplicial complex X whose vertices are the classes of lattices 

in V and whose simplices a are those non-empty sets of classes of lattices for 

which (L[[L] • a} is a chain. So a is a simplex iff a can be writ ten in the form 

a = ( [L0] , . . . ,  [Lo]} such that  rL,  < Lo < ... < LB. So X is the Bruha t -T i t s  

building of the group GL(V) over the field K with discrete valuation v. The 

group GL(V)  acts simplicially on X.  

1.2 THE GALLERY DISTANCE. Recall the following notions concerning build- 

ings. The simplices of maximal  dimension in a building A are called c h a m b e r s .  

Two chambers C, C: are called a d j a c e n t  if C = C: or C N C ~ is of codimension 

one in both C and C ~. A sequence Co = C, C 1 , . . . , C r  = C: of chambers is 

called a ga l l e ry  from C to C ~ of length r if Ci-1 and Ci are adjacent for every 

i = 1 , . . . , r .  The (ga l l e ry )  d i s t a n c e  d(C, C') of two chambers C, C '  is defined 

as the minimum of the lengths of galleries from C to C ~. It is defined because 

any two chambers of a building can be connected by a gallery. Since any simplex 

of a building is contained in a chamber, it makes sense to define the distance 

d(a, a') of two simplices a, a '  of a building as the minimum of distances d(C, C') 
of chambers C 3 a, C ~ 3 a ~. Note that  this is not a metric: d(a, a ~) = 0 iff there 

is a chamber containing a U a ' ;  and d(a, a") < d(a, a ' )+ d(a', a") does not hold 

in general, e.g. the two summands on the right may be zero while d(a, a") ~ O. 

1.3 THE FILTRATION. Let now K = k(t) be the field of rational functions in 

one variable t over the field k. Let v = voo be the valuation given by the order 

of a function at oo, i.e. 

v ( g  f - )  = d e g g - d e g f ,  f ,  gGk[t], g~O.  

Let V = K n+l with its s tandard basis e 0 , . . . , e n .  Since GL(V) = G L n + I ( K )  

acts on X,  so does its subgroup 

r = S L . + , ( k [ t ] ) .  

Let Co be the chamber of X whose vertices are the classes of lattices L(m) = 

~=o~r-miRei, where m = ( m o , . . . , m n )  G Zn+l ,mo  _> ml  >_ - '"  >__ mn and 

0 _~ mi  _~ 1. Let X~ be the subcomplex of X of simplices of distance < d from 

some chamber 7Co,7 E I'. 
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1.4 THEOREM: Xd+l is obtained from Xd by attaching n-cells, up to homotopy, 

i f  q = card k _> 2 "-1.  

Note that k need not be finite. 

The proof of 1.4 will be given in the next sections. The theorem about the 

finiteness length of F follows from 1.4 and the following special case of a result 

of K. Brown [14, Corollary 3.3]. 

1.5 THEOREM: Let X be a contractible CW-complex on which a group r acts 

cellularly. Suppose the stabilizer of every cell is finite. Let Xd, d > 1, be an 

infinite filtration of X by F-invariant subcomplexes such that each Xd is finite 

modulo r. Suppose Xd+l is obtained from Xd by attaching n-cells up to homo- 

topy for ail su~ciently large d. Then r is of type Fn-1 but not of type FPn over 

any ring with 1 ~ O. 

1.6 THEOREM: Let n > 2 and Fq be a finite field with at least 2 n-2 elements. 

Then r = SL~(Fq[t]) is of type Fn-2, but r is not of type FPn-1 over any ring 

with 1 ~ O. 

Proof: Note that the theorem is stated for SLn, whereas the proof uses SLn+I. 

Recall that the Bruhat-Ti ts  building is contractible [25]. For every vertex A of 

X the stabilizer SLn+I,^ of A is conjugate to the stabilizer of a vertex of Co, 

hence all the entries of SLn+I,A are bounded below with respect to the valuation 

v, so FA is finite if k is finite. | 

2. T h e  F - R e s t r i c t i o n  

In this section we define the r-restriction 7~r(c)  of a chamber C. The images 

of the r-restrictions will parametrize the n-cells we shall attach to Xd to obtain 

Xd+l (see 4.2). In this section we only suppose that  a group r acts simplicially 

on a building A such that the action admits a fundamental domain. It is a basic 

fact that the action of r on X as in section 1 does admit a fundamental domain 

(see 3.3). 

2.1 THE RESTRICTION. In this subsection we define a notion of restriction, 

very closely related to the notion of restriction of a shelling (cf. [10]). We do not 

take the action of r into account yet. 
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Let A be an arbitrary building. Fix a chamber Co of A. For any integer d ~ 0 

let Aa(U0) be the set of simpliees of A of distance ~ d from C0. For a simplex 

A of a simplicial complex A let A denote the subcomplex of simplices contained 

in A. Then for any chamber C of our building A such that d(C0,C) -- d +  1 we 

have 

n z  (c0) = U A, 
AE~ 

where ~" is a set of codimension 1 faces of C ([25], cf. [15] W.  6 Proposition). 

For a fixed chamber Co, define the restriction of C as 

7~(C) := {vertices v of C such that d(Co, C - {v}) _< d} 

=Uc\A 
AE~ 

if d(C0, C) = d + 1. Then 7~(C) is the smallest simplex a C C not contained in 

Aa(C0): i.e., a C C is in Ad(C0) iif a ~ ~R(C). 

The name restriction was chosen by analogy with the term restriction used for 

shellings ([10]). 

Remark: One can describe 7~(C) in terms of the corresponding Coxeter system 

(W, S) as fonows. For to E W the descent  se t / ) ( to)  of to is 

/)(to) = e Sle(to ) < e(to)}. 

Here ~(w) is the length of a word representing w with respect to the distinguished 

set S of generators of W. With notations as above, if C = toC0 for to E W, then 

~" is the set of codimension one faces C I"1 C t, where C t = to'C0 and l(w t ) < ~(to). 

Hence z E R(C)  iff the type of x is in/)(to).  So T~(C) is the face of C of type 

/)(to) (ef. [10] Theorem 2.1). | 

2.2. Let a group F act simplicially on a building A. Define 

Ad(VCo) = {ald(a, rCo) _< d} = FAd(Co), 

where of course d(S,T)  = inf{d(a,r)la E S , r  E T} for any two sets S ,T  of 

simplices of A. The filtration Xd of X given in section 1 is of this form, Xd = 

Ad(FC0), d E N, for a certain chamber Co. We define the F- res t r ic t ion  of a 

chamber C in Ad+~(rc0) not in Ad(FC0): 

7¢r(c) = {v  ~ C I d ( r C o ,  C - {v}) < d}. 
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2.3. Let a group F act simplicially on a simplicial complex A. A subcomplex F 

of A is called a f u n d a m e n t a l  se t  (in the strictest sense) if the orbit {Tala e F} 

of any simplex a of A contains exactly one simplex of F.  

2.4 LEMMA: / f  there is a fundamenta/set  for r in the building A then 

(a) For C e a d + i ( r c 0 ) ,  $ Aa(FC0) the F-restriction 7~r(c)  is the smallest 

simplex contained in C not in A~(FC0): so a C C is in A a ( r c 0 ) / f f a  ~ 7~r(c) .  

(b) For any two chambers C,C' of Ad+1(rc0) we have C n C' E Ad(rCo) or 

7~r(c )  = n r ( c  ') and c = ~c' for some ~ e r .  

Proof." Corresponding to a fundamental set F there is a unique map r : A ~ F 

such that for every simplex a of A we have ra  = 7a  for some 7 E r .  Then r is a 

simplicial retraction. It follows that 

(2.5) d(ra, r~') = d(~, ~ ' )  

for any two simplices a, a '  of A. Hence if Co E F - -  which we may assume - -  

we have 

Ad( r c0 )  n F = A~(C0) O F, 

hence we obtain 

(2.6) r~r(c) = ~(rc) 

and (a), since T~(rC) is the smallest simplex a C rC not in Ad(Co). 

If now C n C'  is not in Ad(FC0) then r (C n C') is not in Ad(Co), so there is a 

smallest simplex a C r (C n C') not in Ad(Co), namely a~(rC)  = Ti(rC'), hence 

7~r(c)  = R r ( c  ') by 2.6 and injectivity of r on C n C'. Furthermore rC = rC' 

and hence our last claim, since for every simplex a there is a unique chamber 

D D a such that d(Co, a) = d(Co, D) (the chamber D is the projection of Co on 

a of [29] 2.30, cf. [15] IV. 6 Lemma 1). 

3. An  A p a r t m e n t ,  T h e  F u n d a m e n t a l  Set  

We now return to the situation of section 1. We describe a subcomplex of X,  

an "apartment" in the terminology of the theory of buildings. It contains a 

fundamental set F.  
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3.1 THE COMPLEX A. Let Z act on 7, "+1 by 

z + m : = m + z e  

where e = ( 1 , . . . ,  1) E Z "+1. Let [m] be the orbit of m. Let A be the simplicial 

complex whose vertices axe the Z-orblts in Z n+l and whose simplices are the 

non-empty finite subsets z of Zn+I /Z  such that {ml[m ] e v} is a chain in Z n+l. 
t Here the order relation is m = (too,... ,m, )  <_ m' = (re'o,... ,m ' )  iff mi _< mi 

for i = 0 , . . . , n .  

3.2. Let e 0 , . . . , e ,  be the standard basis of V = K "+1, as in section 1. For 

m E Z n+l define 

L(m) = ~ Ir-m' Re, 

and A(m) = [L(m)]. Then the map A --~ X, [m] --* A(m), given an isomorphism 

of A with the full subcomplex of X containing all the vertices A(m), m E Z "+1. 

The image of A is actually an a p a r t m e n t  of X (cf. [15] V. 8). 

3.3. Let Z~oln be the set of sequences m = ( m 0 , . . . ,  m , )  in Z "+1 which axe 

monotonically decreasing, i.e., m0 >_ ml >_ . . .  _> m , .  Let F be the full subcom- 

plex of A whose vertices axe the orbits [m], m E Z~o~n • It is a basic fact that F 

is a f u n d a m e n t a l  se t  for the action of F on X ([26], cf. 5.1.5). 

4 .  A t t a c h i n g  Cells 

Using the notion of F-restriction we paxametrize the cells to be attached to Xd 

to obtain Xd+l. We state an explicit version of Theorem 1.4 to be proved in the 

last section of the paper. It reduces our proof to showing that the complex T(p) 

of 4.1 is spherical. 

4.1. Let X and Co be as in section 1. In section 2 we defined the notion of 

F-restriction. Let 

Rd+, = {TC(C)IC Xd+,, Xd}. 

For p E Rd+l let 

s (p )  = u p Xd+,} 

be the star of p in Xd+l and 

T(p) = S(p) n Xd. 

Here is an explicit version of Theorem 1.4. 
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4.2 LEMMA: 

(a) xd+l  = xd  u Up,R,+, s(p).  
(b) S(p) CI S(p') C Xd for p 5h p' in nd+t. 

(c) S(p) is homeomorphic to the cone over T(p).  

(d) T(p) is a complex of dimension 

n - 1 homotopy equivalent to a wedge o f ( n  - 1)-spheres, i f q  = # k  > 2 "-1. 

(a) is clear by definition, (b) follows from 2.4(b). 

(c) a • S(p)  is in T(p) iff a 75 p, by 2.4(a). So T(p)  is the join of T'(p)  = {a • 

S(p)la f'l p = ~} and the boundary Op of p 

T(p)  = Op * T'(p).  

Hence the cone over T(p)  is T'(p)* Op * point, homeomorphic to T' (p)*  p = S(p). 

The proof of (d) will occupy the last section of the paper. 

4.3 Remark: Note that the proof so far holds for simple and simply-connected 

Chevalley groups G over Z instead of SL.. The analogue of 4.2(d) is missing: 

The dimension and homotopy type of T(p) has to be determined, l 

5. The Chamber  of Minimal  Distance,  Transversal i ty  or How to Stack 

Boxes 

Given a simplex cr in the fundamental set F of section 3 we give two descriptions 

of the chamber C D a such that d(Co, a) = d(Co, C). One involves the concept 

of transversality to the canonical filtration. The other one describes a certain 

rule for stacking boxes. The first one implies Proposition 4.2 by a joint result 

with Abramenko [2]. 

5.1 THE CANONICAL FILTRATION. We give an elementary description of the 

canonical filtration [19, 30] in our situation. 

Fix an R-lattice L in V = K "+1, R the valuation ring for the valuation v = voo 

of K = k(t), k an arbitrary field, as in 1.3. Let k be an algebraic closure of k. 

For P • k let vp be the valuation of k(t) which assigns to f •/¢(t) its order at P,  

i .e . ,  the exponent • Z of the factor (t  - P) in the decomposition of f into linear 

factors. Let Rp be the corresponding valuation ring, 

tb ,  = { f  • k( t ) lvp(f)  >_ O} = ~[t],_p. 
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Define the degree of x = (x0 , . . .  , x . )  E K "+1 with respect to L as 

degn(z)= ~ deg~(x), 

PeP' (i,) 

where the sum is t~ken over P • pl(~) = ~ U {oo} and, for P • ~, 

deg~,(z) = degp(x) = mJn{vp(xo),..., vp(x,)} 

= sup{r • Zl(t - P)- ' x  • ~ Rp ei} 
/=0 

and 

Hence 

degi (~ )  = sup{, • z l ~ - ' ~  • L}. 

deg L z = co iff z = 0, 

deg L fx  = deg L x for f 6 K*, 

deg z(m) ei = mi for m = (m0, . . .  , m , )  6 Z "+1, 
i 

- -  ~ n + l  deg L(m) ~ fjej < mi if fi # 0 and m 6 -mon" 
j=0 

For t 6 Z define 

Isr. J. Math. 

v' = sp~{~ ~ K"+'I degn(~) _> t}. 

So for L = L(m), m 6 -mon,7"n+l we have 

V t = span {eilrni >_ t}. 

The canon ica l  f i l t r a t i on  7(L) corresponding to L is the ascending sequence of 

different ones among the spaces Vt,t 6 Z. So 7-(L) is a flag in V.  

Note that  r is F-equivariant, i.e., for 7 6 F we have 

r ( T Z )  = 7 r ( L ) ,  

since degp(TX) = dege(x)  as (DRp ei is F-invariant, hence deg'~z(Tz) = degn(z). 

For every pair L" _< L' of R-submodules of V a flag r in V induces a flag 

¢L,/L,, of R-submodules of L'/L", namely 

rn,/L,, = {UnL'/UnL"IU • r}. 



Vol. 76, 1991 ARITHMETIC GROUPS 123 

In particular, if lrL t < L" < L I then LI/L '' is a vector space over the field 

R/IrR = k and 7"L,/L,, is a flag of subspaces of U / L " .  

Recall that two vector subspaces U1, U2 of a vector space W are called t r a n s -  

ve rsa l  if U1 f'l U2 = 0 or U1 + U2 = W. A vector subspace U of W is called 

transversal to a set of subspaces of W if U is transversal to every space of this 

set. 

5.1.1 PROPOSITION: Suppose X ,  Co and F are as in section 1 and section 3.3. 

Given asimplex a o f F  and a chamber C D a of X ,  then d(Co,a) =d(Co ,C)  iff 

C G F and for every [L] E C the following conditions hold. Let L' be the largest 

lattice < L such that [L'] E a and let L" be the smallest lattice > L such that 

[L"] E a. Then L /L '  is t ransversa/ to the flag r(L')L,,/L,. 

A proof of 5.1.1 will be given in the next subsection 5.2. 

In order to apply the proposition to prove 4.2(d) let us restate the proposition 

in a way independent of the fundamental set. 

Recall that  the T i t s  bu i ld ing  T ( W )  of a vector space W is the flag complex 

of the poset of vector subspaces U ¢ 0, W of W ordered by inclusion. Let 

= {[L0], . . . ,  [Lo]}, L0 < Zl < - - .  < L, < ~ - lL0  =: L,+I, 

be a simplex in X.  Define a map A from the star of a in X to the complex which is 

the join of a and the join of the Tits buildings of the various Li+l/Li ,  i = 0 , . . . ,  s, 

,~ : s t x a  --* a * ~, T(Li+1/Li),  
i = 0  

by A([Li]) =[Li ]  and A([L]) = L/L i  if Li < L < Li+l. Then A is art isomorphism 

of simplicial complexes. For a set ~ of vector subspaces of W let T¢(W) be the 

full subcomplex of T ( W )  of subspaces U ¢ 0, W which are transversal to £. 

5.1.2 PROPOSITION: For a simplex a in X and a chamber C D a in X we have 

d(rCo, ~) = d(rC0, C) i~r 
& 

AC E a * *oTe,(Li+l/Li),.= 

where £i = 7"(Li)L,+,/L,. 

5.1.1 =*, 5.1.2: Let r : X ~ F be the retraction onto the fundamental set (see 

the proof of 2.4). Suppose rC  = 7C for some 7 E r .  Then d(rC0, a)  = d(rC0, C) 

ii~ d(Co, 7,,) = d(Co, 7C) by 2.5 ire 

A7C E 7a  * i~oTz~(7Li+l/7Li)=_ 
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where C~ = "r(TLi).ti.~+,/.~Li by 5.1.1, hence 5.1.2 since everything - -  including r 

- -  is F-equivariant.  

5.1.2 =~ 4.2(d): If  £ is a flag in a vector space W of dimension w, then Te(W) 

has dimension (w - 2) and is homotopy  equivalent to a wedge of  (w - 2)-spheres 

provided q = # k  > 2 ~'-2. This is a special case of  the main  result of  [2]. Hence 

the complex 

T(p) = Op * T'(p) 

of 4.2 is isomorphic to a complex of  dimension n -  1 and homotopy  equivalent to  a 

wedge of  ( n  - 1)-spheres if q > 2 dlm(Li+~/L~)-2 for i = 0 , . . . ,  8, hence if q _> 2 " -1 ,  

the worst  case being d i m s  = 0, L1 = l r - lL0.  Recall tha t  d i m V  = n + 1 in 4.2. 

| 

5.1.4. Remark: Our  definitions of degree and canonical filtration axe special 

cases of  the usual ones ([24, 16, 19]). More precisely, let L be an R-lat t ice in 

V = K n+l.  In the constant  sheaf on P l ( k )  with stalk V let E(L) be the subsheaf  

whose stalks are E(L)p = @Rp ei for P E k and E(L)oo = L, resp. Then  E(L) 

is the sheaf of  germs of sections of a vector bundle, also denoted E(L). Then  

for x E V,x ~ 0, degL(x) is the degree of the line bundle E(L) I"1 span x. The  

canonical  filtration of the vector bundle E(L) is {E(L)  n UIU E r (L)} .  

Then  r ( L ' )  induces the flag r(L'),~-IL,/L, in the fibre 7r-~L~/L ' of E(L') over 

oo. Proposi t ion  5.1.2 describes the chambers  C D a of minimal  distance f rom 

FC0 in terms of certain subspaces of the fibres of E (L i )  at oo, [Li] E a. II 

5 . 2  STACKING BOXES. To prove Proposi t ion 5.1.1 we first restate  it. 

Let m < m" < m + e be in Z,~+l We say that  m ~ is the s u c c e s s o r  of m under  
- -  - -  - - m o n  • 

t#  

m" if re '  E -mon,~n+l ...~' : m + e j  _< rn" and mj = rain {milmi < m i }. Think  o f m  

as n + 1 stacks of boxes, the stack number  i consisting of mi boxes, and of  m" as 

a ceiling under which new boxes can be stacked. Then  m < m" < m + e means 

that  on stack number  i there fit ei = m'i' - mi E {0,1} boxes. The  conditions 

m, m', m" E zn+~ say that  the height of the stacks decreases f rom left to  right. 

So to perform the move from m to its successor m ~ under  m" means  to stack 

one new box on the lowest possible level and to put  it on this level as far left as 
~ n + l  possible, since m t E -too," 

There  is a successor of rn under  m" iff m < m", in which case it is unique. A 

sequence m = m0 < .-" < rnt = m" is called the s e q u e n c e  o f  s u c c e s s o r s  f rom 

m to rn" i fmi  is the successor ofmi-1 under  m" for every i = 1 , . . . , t .  
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The canonical filtration r (L (m) )  for L(ra) has as its first non-zero te rm V1 the 

span of those el, for which mi is maximal,  as V2 the span of those el, for which 

rai is maximal  or second maximal,  etc. (see Fig. 1). 

m oo 

m 

'e to the 

)r m t 

I Vl .=,.-4 
S v~ ---I 
I , v~ -==I 

Fig.l. 

The following lemma follows immediately from the definitions and the compu- 

tation of the canonical filtration of L(m) done at the beginning of 5.1. 

= L "  5.2.1 LEMMA: Given L' L(m' )  < = L ( M " )  < ~r-lL '. Let 

= " )  ~n-b l  L' = L(m' )  = L(mo) < L ( m , )  < . . .  < L(m, )  = L (m " )  L m i e -mon, 

be a maxima/ascending  sequence from L ' to L " . Then L( m i ) / L( mo ) is transver- 

sa / to  theaagr (L ' )L , , IZ ,  f o r e v e r y j  = O , . . . , r  i f f m '  = m0 < m~ < . . .  < m t  = 

m" is the sequence of successors of m t under m".  

So 5.1.1 is equivalent to 

5.2.2 PROPOSITION: Let o" = {[L0], [LI],..., [Ls]}, Li = L(mi), be a simplex of 

F, m0 < rnl < ... < ms < rn0 q- e ---: ma+1. Let C be a chamber containin K a. 

Then d(Co, a)  = d(C0, C) it~ C E F - -  equivalently every vertex of  C is of  the 
n + l  f o , ~  A(m),m e Z"+. ` - -  and {m e Zmo.lA(,-) e C,-,~ < m < " i + , }  is the 

sequence of  successors of  rni under mi+l  for every i = 0 , . . . ,  s. 

Proof: Let a be an arbi trary simplex of a building A and C0 a chamber of A. 

Then there is a unique chamber C D a of A such that  d(Co, C) = d(Co,#)  (the 

projection of C0 on a of [29] 2.30, cf. [15] IV. 6 Lemma 1). It  thus suffices to prove 
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necessity in the proposition, since the successor properties of the proposition 

determine C uniquely. 

If C is the chamber such that  d(Co, ~) = d(Co, C), then c is contained in 

every root containing a and Co ([29] Theorem 2.19). Recall that  a root is a 

halfspace in an apar tment  whose boundary is a wall. It  follows that  in our case 

C E F since F is an intersection of roots containing Co and a. Furthermore, 

if C is not as described in the proposition then there is a A(mi) E ~ and a 

rat E Zmon, A(mt) E C such that  mt is not the successor of mr-1 under rai but  

m r + l , " . ,  mi is the sequence of successors of m,  under mi, say 

m t  = m r - 1  + ej, 

mt+l = rat + ek, 

m t - l , j  = d, mt,k = d with d > d .  Then j < k. Let ¢ be the linear form 

on R n + l , ¢ ( z o , . . . , z n )  = z j  - z k .  Then both ~ and Co are in the halfspace 

~(x) _< d - d bounded by the wall ( (x)  = d - d', hence so is C, a contradiction. 

5.2.2 makes it easy to compute 7~(C) (see 2.1). 

5.2.3 COROLLARY: Let C be a chamber in F,  consisting of  the vertices A(mi), 

mo < ml  < " "  < mn+l = mo + e, rai E -monZn+l" Then A(mt) E ~ ( C )  iff  mt  is 

not the successor of  mr-1 under mt+l.  

Here t = 0 , . . . , n ,  put m-1  = mn - e. I 
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